
Programming with GLAF:
A Step-by-Step Example

This guide provides a step-by-step example for developing a program using the GLAF
programming framework. It covers many aspects of GLAF programming and attempts to

highlight the mindset with which one should approach GLAF programming to take
advantage of the framework’s features.

Prepared by Konstantinos Krommydas (kokrommy@vt.edu)

July, 2016
Blacksburg, Virginia

Copyright 2016



1

In this tutorial, we present how to develop a simple program in order to showcase some
of the main functionalities of the GLAF programming framework, as well as the GLAF
programming paradigm.

Specifically, our program is related to image processing. Given an input image in the RGB
format (i.e., an image with three components; Red, Green, Blue), we compute an output
image that is scaled according to certain computations (as function of the pixel position).
The details of the computation itself are not important. This is an intentionally dummy
example that functions as an introduction to GLAF programming.

The pseudo-code of our program is given below:

// Declare RGB images (input and output)

rgb_image input_img [7][7]

rgb_image output_img [7][7]

// Initialize input_img

for each row and each column (7x7 pixels) of each component{

if (row >3) {

input_img[R component ][row ,col] = row*2

input_img[G component ][row ,col] = row*3

input_img[B component ][row ,col] = row*4

} else {

input_img[R component ][row ,col] = 0

input_img[G component ][row ,col] = row^2

input_img[B component ][row ,col] = row^2

}

}

for each row and each column (7x7 pixels) of each component{

output_img[R component ][row ,col] = input_img[R component ][row ,col]*2

output_img[G component ][row ,col] = input_img[G component ][row ,col]*2

output_img[B component ][row ,col] = input_img[R component ][row ,col]*2

}

You can follow the example step-by-step using the online version of GLAF available at
http://glaf.cs.vt.edu/glaf online/grid main.html

For any questions related to GLAF, please, contact Konstantinos Krommydas (kokrommy@vt.edu)
or Ruchira Sasanka (ruchira.sasanka@intel.com).



2

Every GLAF program starts with the main GLAF screen that defaults at the first step of
the main function (Main()).

Before starting a program it is wise to identify any type of grids (i.e., custom data-types)
that is going to be re-used throughout the program, so that we avoid having to design it for
every new declaration. In our case, we will use a grid that corresponds to an RGB image.
This corresponds to the functionality of templates. To define a template, we click on the
second drop-down menu that contains Templates, Global Grids, and Functions that belong
to the current module of our program.

Now, we are in the Templates section of our program. We click on New Grid to define a new
template grid. We want to define a three-dimensional grid; two dimensions will correspond
to the two dimensions of the image and the third dimension will correspond to the Red (R),
Green (G), and Blue (B) component of the image.



3

Once, we click on New Grid we are presented with commonly used predefined grids (e.g.,
scalar, array, 2D array). Since none of the predefined grids apply in our case, we select the
2D Array (for every selection we can subsequently add/remove dimensions or change the
attributes of the grid).

From the grid configuration screen, we click the Add Dimension button to add the third
dimension. We specify the Displayed Size and Actual Size of each dimension. We leave
dimensions 1 and 2 as they are and update the sizes for dimension 3 with the value 3 (for
red, green, blue components of an image). The Titles? check-box is by default checked and
predefined titles are added for the third dimension (Tab00, Tab01, ...). We change the default
dimension titles to R, G, B by double-clicking on the pre-existing default names (Tab00, etc.)
and writing the new titles. Also, we set a name for our template grid by clicking on the
pre-existing default grid name (Out) and changing it to the desired new name (rgb img).
After finishing the grid configuration step, we click the Done button.



4

From the drop-down menu on the top of the GUI (where we selected Templates earlier) we
now select the Main() function and click the Insert New Step button at the right side of the
top bar. This will take us to the first step of our algorithm. Recall that a GLAF program
contains one or more functions (starting with Main()) and each function contains one or
more steps.



5

In the first step we will initialize the input image of our algorithm. The current screen asks
us to select an Output Grid. Recall that each step contains one Output Grid and zero or
more Input Grids. Computation within a step flows from the input grids to an output grid.
Hence, it is suggested that users develop their programs keeping this in mind for every step.
However, technically GLAF does not prohibit writing information to a grid selected as input
grid, nor leave an output grid of a step unwritten.

Since we are going to use a template to define this step’s output grid, we need to select
Existing Grid. From the drop-down menu of existing grids, we select our desired template
grid (rgb img (Template)).



6

For templates, we use the template to create a copy of the template, so we need to give a
name to this new grid by clicking on the pre-defined copy name (Copy) next to Make a new
copy named: (make sure the check-box is checked). In our case, we name it input img. Once
we name the template copy grid, we click Done.



7

Now, this grid (input img) has been selected as our output grid for the step. This denotes
that this grid will get written in this step by the computation specified in said step. Since
we are not going to use any source grid (or input grid), we click Cancel to finish specifying
grids for the step. Subsequently, we are confronted with the computation part of the step.

Notice how the grids of a step are collocated with the computation pseudo-code in the same
screen. Using only clicks via the mouse and typing any numbers we will now define the
desired computation for the step and inspect the effect of the step’s code (i.e., results) on
the grids at the end.

Before doing this, though, let’s pay closer attention to what we see in the current screen
starting with the grids:

Note the input img grid; on the horizontal and vertical dimension you can see predefined
labels: 0, row, end0, and 0, col, end1, respectively. These labels can be used to easily address
(i.e., refer) to cells within a grid or to set start, step, end values in loops (discussed later).
By clicking on any blank space next to a dimension, we can also enter any other number or
expression (that may optionally include end0, end1, or another scalar grid used in the step).
The name of the index variables for each available dimension (row, col, ind2 ) is conveniently
displayed above the statement boxes (clickable for easy use).



8

Moving to the statement boxes section we note the following:

There are three types of statement boxes that a step can contain; Index Range (which
corresponds to a loop), Condition (which corrresponds to a conditional statement), and
Formula (which corresponds to a statement that specifies computation using input/output
grids). Each step by default contains one of each of the above types of statement boxes. The
user may not need to use one or more of these, or (in the practical case) will want to add
more boxes of a type (e.g., more condition boxes for complex conditional statements, more
formula boxes). However, each step can only contain one Index Range. This is a conscious
design decision in GLAF: if users want a nested loop structure at some point in the current
step, said loops need to be separate steps of a new function (via a user function call).

Now, let’s move to the actual implementation of our step’s computation. Specifically, we
want to initialize all components (R, G, B) of the image along the two dimensions. So, we
keep the default Index Range statement box as is (foreach row col). As is, the loop iterates
over all values of row from 0 to end0 and all values of col from 0 to end1. This corresponds
to the following C code:

for (row=0; row <=end0; row++)

for (col=0; col <=end1; col++)

Note that the end0, end1 are inclusive. You may have noticed that the start, step, end values
for each index variable are not explicitly seen. To see and/or change any of these values,
you need to click on the index variable used in the index range statement box. For example,
clicking on row expands it as seen below:



9

You can see that row=input img(0:end0:1) specifies that row will obtain values starting
from 0 to end0 (where end0 corresponds to the size for dimension 0 for the input img grid
– end0 may be different for a different grid, depending on the grid’s specification during its
creation). The loop’s step for row is 1. If we were to change the grid to which row refers,
we would need to click the name of the grid on the expression for row in the Index Range
statement box and subsequently click at the label of the grid of interest. Similarly, clicking
on 0, end0, 1, would allow us to type a numerical value explicitly or to click on a label of a
grid (e.g., 0, row, end0 ). To select a value that is an expression of end0, row, etc., we need to
click and hold on the labels’ part of the grid (e.g., next or above a dimension for horizontal
and vertical dimensions, respectively) and then “build” our epxression. For example, see
below, where we defined end0-1. We can use this “end0-1 ” label anywhere in a statement
box simply by clicking on it.

We now click the conditional statement box. If() is automatically filled in the box. We click
within the parentheses, then click on row (from the Index Variables list), then click on the
“>” sign and type 3. We just built a simple conditional statement, whereby what follows in
the subsequent statement boxes will take place when row>3.

So far, we worked with the Index Range and Condition statement boxes (i.e., added a loop
and conditional statement). Now we proceed to the Formula statement box by clicking in
it. We are going to assign values to the R component of our input img grid. To do this,
we click on the R label of the input img grid. Then, we click the cell at the intersection
of row and col and notice that we have addressed input img(row,col,R). Now, we insert a



10

computation for this cell (as looped over row and col per the Index Range statement box.
We fill row*2 (no practical meaning, just for the sake of the example). We do the same
thing for components G and B. First, we add two new formula statement boxes by clicking
the Add Formula button. We click on the G tab and fill in the formula for this component
(in our example we use row*3 ) and repeat similarly for the B component.

Computation in this step so far occurs for row>3. We will add an else condition to show
how to construct more complex conditional statements. We click the Add Condition button.
By default this creates an If() conditional at the same level as the preceding statement box.
By clicking on the If() we can see more options at the bottom of the screen: if, else, else
if. We click on the else button. GLAF recognizes that this else corresponds to the closest
if and matches them accordingly. For more complex conditionals with multiple nesting,
the user can use the <= and => buttons (on the column left of the statement boxes), as
needed. This will take care of indenting the statement boxes more on the left or the right
(as allowed).



11

For now, we will add three more Formula statement boxes, for the else condition, by clicking
the Add Formula button. For the R component, we intialize to zero. For the G and B com-
ponents we will use a library function and a user-defined function to showcase the function
usage.

First, we will look into library functions. We click on the flib button and a menu to select a
library and function from that library appears, as shown in the next figure.

We select the Math library and the pow function from the drop-down menu and click the
Insert button. We see the Math.pow(number,number) inserted in the formula statement box.



12

We click on the first number and then click on row from the Index Variables list to insert this
as the first number. Then, we click on the second number and press 2. This math library
function (pow) will raise row to the power of 2.

Last, let’s see how user-defined functions work. Again, we will create a dummy function
that takes an argument and raises it to the power of 2 (like the pow library function we
used above). We click after the last formula statement box’s “=” sign and then click the
fnew button and give a name to our function. Here, we simply name it my function. We see
a function inserted in the statement box (my function()) without any arguments. Now, we
may add arguments. In our case, we will pass row, so we click within the parentheses and
then on row from the Index Variables list. This will be the only parameter of the function.

Our current step up to this point is shown in the next figure.



13

To specify what the function we just created does, we will go to the function’s drop-down
menu at the top of the GLAF GUI and select the corrsponding function.



14

We are taken at the function header screen. By default, all functions have a return value
(integer ReturnValue). If our function returns a value this would be the default value to be
returned, unless a return clause is used with another grid cell value. Parameters are of the
type passed during creation of the function and are automatically named paramX (where X
a number). Of course, we can change the parameter name to something more intuitive by
doube clicking on the name and typing our preference. Here, we leave as is.

We click Insert New Step. We select Existing Grid and then ReturnValue. As source grid,
we select param0. Now, as before, we complete the step’s computation (see image).

Optionally (since ReturnValue is returned by default), we can add another formula statement
box to specify the return value. We click the return buton and then click Return Value. The
above would be useful if we wanted to return different values/grids, based on conditional
statements, an arithmetic function of a grid cell, etc.



15

Now, we go back to the Main() function (by selecting it from the drop-down menu on the top
of the GLAF GUI). Since we have concluded speficying computation for the step (including
the called user-defined function), we can see the result of our step by clicking on the Menu
button on the top right of the GLAF GUI, and subsequently selecting Show Data.



16

As we can see, the results are evaluated correctly. At this point, if we didn’t get the desired
output, we should try to identify the problem in our program. Also, you can notice the
parallelism meter on the top bar of the GLAF GUI that indicates available parallelism in
the current step. Specifically, the index variables row and col are green, which means that
both can be parallelized. The number 7 indicates that there are 7 parallel iterations for each
of these two index variables. We click Menu again and select Hide Data to hide the results.

Up until this point, we have initialized our input image. We will insert a new step by clicking
Insert New Step. Then, we will define a new grid to store the output image (i.e., the result of
our computation). As we did for the input image, we will use our template, so as Output Grid
for this step we select Existing Grid and do as before (giving a different name to the new
grid: output img). Remember that every grid (as do variables in traditional programming
languages) is uninitialized. In our case, we will write on every cell of this newly defined grid,
so intialiation is not necessary.

After selecting the Output Grid of the step, we select the Source Grid. We select the
input img grid we created (and initialized) in the previous step. Once we are done, we click
Cancel to proceed with specifying the computation for the current step.



17

In this step, we will just scale each cell of the input image by multiplying with 2. We define
the desired computation by clicking appropriately on the grids (as we did in the previous
step). We show what the step would look like in the figure below.



18

Clicking on Menu and then on Show Data from the menu, we can see the results and verify
correctness. By clicking Colorize or Data Image in the menu, we can see the results using
combinations of numerical values and/or colors (gray-scale). You can see that the output
and input images are gradually darker and that the output image is overall darker than the
input image (since we multiplied the input image’s values by 2 ).



19

Once we verify our program’s correctness, we can generate code by selecting our desired
target platform (e.g., CPU), language (e.g., Fortran, C), and any other options (e.g., parallel
version of the code) from the Menu → Generate code... menu item.

To obtain the code we need to do the following:

1. Click the Generate .glf file button. This will perform the appropriate actions to gen-
erate the appropriate codes and pack them in a single file (sourceCodes.glf ) that will
be downloaded to your computer.

2. Download the splitfiles PERL script in the same directory where you downloaded the
sourceCodes.glf file (you can find the link in the page from Generate code... menu
item).

3. Run the PERL script with the command: perl splitfiles. The following are generated
under the prog sub-directory:

• All code implementations in an appropriate folder structure.

• A Makefile that can be used to compile all code implementations.

• A script (runScript.sh) to execute and measure execution time of all code imple-
mentations.

4. Run the make command from within the prog sub-directory: make

5. Run the execution and timing script from within the prog sub-directory: sh run-
Script.sh



20

6. View the execution time results by clicking the results.html file created in the prog
sub-directory (it would open in your default web browser).

If you want to see the code that is generated you can navigate the prog sub-directory. For
example, if we selected CPU and parallel implementation in C using OpenMP directives, we
obtain the code shown below automatically generated:

This concludes our GLAF tutorial! For more programs, please, look at the GLAF web-site
at http://glaf.cs.vt.edu.


